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Abstract 

A patented technique for suppressing the sidelobes of an array antenna is considered. 
This technique involves the addition of two elements, one at each end of the array, which 
together produce  an interferometer pattern used for cancellation of sidelobes. It is 
shown here that the technique is most eflective for uniform illumination and that there 
then exists  an  optimum fixed position for the added elements. The amplitude of the 
excitation of the auxiliary elements determines the angular location of the region of 
sidelobe reduction while the phase of the excitation tracks the beam-steering  phase of the 
array. Thus,  this technique is seen to  be  easily implemented in  an  array controlled by 
coupled oscillators. The technique generalizes in a straighgorward manner  to two- 
dimensional arrays  in which case a set of auxiliary elements on the perimeter of the 
array is required. A two dimensional oscillator controlled array of this type is described 
here with which one can  produce  a main beam and a sidelobe suppression region which 
can be independently positioned anywhere in a hemisphere provided they do  not 
coincide. 

I. Introduction. 

In many communications and  radar applications, one is confronted with interfering 
signals originating in a predefined  angular sector. In such a case, one would like to 
design the antenna to be insensitive to signals in that  angular sector while  maintaining 
high sensitivity in the direction of its main  beam. Depending on the particular situation, 
one  may desire that either or both the main  beam  and  the suppressed angular sector be 
steerable. In treating this design  problem,  we consider initially  the simple case of a one- 
dimensional  linear  array of 2N+l discrete radiating elements as represented in Figure 1. 
This case was  treated in a Patent  Disclosure by Michael A. Kott  in  which  he  described a 
method for sidelobe cancellation  involving the use of  an auxiliary interferometer 
consisting of two elements added  to the array, one  at  each  end as in Figure 2.[ 13 While 
the separation between  the end elements of  the  original  array  and  the  added elements was 
not  specified by Kott, he  did suggest that a possible separation might be equal to the 
inter-element spacing of the original array. Kott  showed by example that, for typical 
aperture  taper, one could adjust the relative phase of the excitation of the added elements 
about a nominal 180 degrees to  bring the interferometer  lobes of the added elements into 
alignment  with the sidelobes of the original array  pattern in the vicinity of a specified 
angular position in the far zone. Then, by subtraction of the interferometer pattern  from 
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that  of  the original array with proper amplitude weighting, one could cancel the sidelobes 
in the vicinity of that angular position. This nearly eliminated the sidelobe in question 
while significantly reducing neighboring sidelobes as well  thus producing a wide-angle 
suppression of  the antenna sensitivity. Finally, Kott also pointed out that several such 
arrays could be placed side by side to produce a horizontal fan beam  with  reduced 
sidelobes around a specified elevation angle or a vertical fan beam with reduced 
sensitivity around a specified azimuth angle. 

Prior to Kott’s work, Tseng discussed the design of Taylor weighted arrays and apertures 
having far zone patterns with a specified angular region  of  reduced sensitivity.[2] He 
achieved the desired pattern by adjusting the positions of the zeros of the array factor 
placing them closer together in the suppression region  and further apart elsewhere. In 
doing this he noted that such suppression required modification of the aperture 
distribution only near the ends of  the array. This is, of course, consistent with  the  method 
of  Kott  in  which the aperture distribution is augmented at the ends of the array. 

Recently, Liao and  York introduced a method of beam-steering applicable to linear arrays 
using  an array of coupled electronic oscillators to produce the necessary element 
excitations.[3] They  showed that the  beam of such an array could be electronically 
steered without  the use of  phase shifters by controlling the free running frequencies of the 
end oscillators of the oscillator array. Pogorzelski, et al. [4] provided a convenient 
linearized theory describing the dynamic behavior of such arrays and Pogorzelski [5] 
generalized the analysis to the analogous two dimensional array wherein the steering is 
accomplished by controlling the free running frequencies of  the perimeter oscillators, a 
great simplification over the conventional beam-steering control system using phase 
shifters. Inherent in these concepts, however, is the assumption of uniform oscillator 
amplitude throughout the array. While various aperture tapers could be obtained by 
adjusting the gains of  the amplifiers between  each oscillator and its corresponding 
radiating element, the most natural taper resulting from this arrangement is  the  uniform 
taper. Thus, it is of interest to investigate the implications of uniform aperture 
illumination when applying Kott’s sidelobe suppression scheme to oscillator controlled 
arrays. As will be shown  here,  the  uniform taper is, in a mathematical sense, the  ideal 
taper for Kott’s scheme and, in fact, the coupled oscillator system provides a means of 
achieving optimum results under  the uniform aperture illumination assumption. 
Extending Kott’s work, it is further shown  that  the entire concept is quite naturally 
generalized to a  two dimensional array  with a steerable pencil  beam  thus providing a 
suppression region  which  is independently steerable to any desired position outside the 
main  beam regardless of  the beam-steering angle. 

11. A Linear Array  with  Uniform nlumination. 

For simplicity in describing the concept, the elements will be treated as scalar isotropic 
radiators. Element pattern  and  polarization effects are easily accounted for in the case of 
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a  practical design. In terms of the inter-element spacing, s, which is assumed  to  uniform 
across the array, the far  zone  radiation  field  is  given  by, 

n = - M  

where 

u(0)  = sin 0 - sin 0, 

and A,, is the amplitude of the excitation of the nth element, k is the wavenumber, 8 is 
the angular position of the field point,  and is the angular position of the beam  peak. 
Again for simplicity of presentation,  we suppose that the excitation is uniform across the 
array;  i.e., Am=l. In  that case, the expression  for E can be summed in closed form. The 
result  is, 

A. Sidelobe Suppression 

Following  Kott, consider the case where two elements are added to the array, one at each 
end, such that they are separated  from the original end elements by  a distance d as shown 
in  Figure 2. Let the amplitude of their excitation be P and  let the phase of their excitation 
be  p.  Let  a subscript "-" denote the element added at position -Ns-d  and let a subscript 
"+" denote the element added at position  Ns+d. The total field radiated by the 
augmented  array  can  be written, 

We wish to set the values of P and  p  for  each  added element so as to achieve the 
objective of a sector of reduced  gain  centered  at a specified angle, 0s. The approach is to 
set the phase,  p, so that the lobes of the interference pattern of the two added elements are 
matched in width  to the sidelobes of the original array and then to set the amplitudes, P, 
to cancel the sidelobes of the original  array  in the desired angular region. We  proceed as 
follows. 

First, since the first term of (3) is real, the second  and third terms will  have to be complex 
conjugates. Thus, p+ = -p- = p  and P. = P+ = P. Equation (3) then becomes, 
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Next, we choose d = - and p = -- + (M + +)ks sin 8, resulting in, S n 
2 2 

It is now quite obvious that the desired goal  can be achieved by properly setting the value 
of P; that  is, setting 

results in a total field, 

which obviously has a zero  at 8 = 8s. More  importantly, however, it has a small 
magnitude in a wide  region surrounding 8 = 8s by virtue of the matching of the lobe 
widths discussed above. In fact, in  this  respect it may be more informative to rewrite (7) 
in the form, 

E T  (6) = {csc[$ksu(6)]- csc[~ksu(6,)&in[(M + +)bu(6)1) (8) 

Here  the first factor in curly brackets gives  the envelope of the sidelobes while the second 
factor contains the rapid variation. Thus, the  region of sidelobe suppression extends over 
the range for which the first factor remains small. 

B. Numerical Examples 
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To illustrate the effectiveness of the technique  described  above, we compute a  number of 
simple examples and  plot the far  zone  gain  of  the array. That is, we plot 

G(8) = 20 log,, [ 4%) 

The  array  to be considered is a 21 -element  array (M=10) with  half wavelength spacing. 
The  two  added elements are  then  spaced one-quarter wavelength from the end  elements. 
We begin  with  the case of an unscanned  beam  and select the suppression region  to  be 
centered at 30 degrees from  broadside. The resulting pattern is shown in Figure 3a 
together with the pattern of the original  array  without the added elements. Note that the 
suppression extends over several  sidelobes. Note also that,  because the pattern of the 
added elements is antisymmetric,  the sidelobes for negative angles are enhanced. This 
result is to be compared  with the. traditional  nulling technique using  a single added 
element  weighted  to  place  a  null at 30 degrees. The result is shown in  Figure  3b  and 
exhibits a  much  narrower suppression region. 

Next, consider an array with the main  beam  steered to -30 degrees from broadside and 
apply sidelobe suppression centered at 30 degrees as before. The result is shown in 
Figure 4. Here the suppression is even  more effective due  to the greater angle between 
the  main  lobe  and the suppression region. This implies that  if the suppression region 
were chosen close to the main  lobe, the suppression would be reduced in effectiveness. 
This is verified  in the case plotted  in  Figure 5 where the main lobe is unscanned  but the 
suppression region is centered at 8 degrees.  Here sidelobes for both positive and  negative 
angles are enhanced and the suppression region  is  much  narrower.  Thus, the suppression 
is less effective near the main  lobe  and  more effective far from the main lobe. The 
transition between these two extremes can  be  taken to occur when no sidelobes on the 
same side of the main  beam as the suppression region are increased in level. From (8) it 
can  be shown that this occurs  at, 

which for the present case reduces to, 

This transition case is illustrated  in  Figure 6 where the main  beam  is scanned to -30 
degrees while, according to (1 l), the suppression region is centered at -9.594 degrees. 
As anticipated, none of the sidelobes to the right of the main  beam are increased. 
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C. Discussion of the Linear  Array. 

Kott’s sidelobe suppression scheme  has  been  applied  here  to  a linear array  with  uniform 
illumination. It has been  shown  that  if the separation of the added elements from  the  end 
elements of the array  is  set  to  exactly  half the inter-element separation of the original 
array  and if the phases of the added elements are set to  a value which is linearly 
extrapolated from the phases of the  original  array elements and augmented appropriately 
by f90 degrees, the zeros of the pattern  of the added elements exactly coincide with  the 
zeros of the original  array pattern. This will  only  be true for uniform illumination. It is 
in this sense that the uniform  case is the ideal  one for the Kott suppression scheme; that 
is,  it  yields the widest  possible suppression region. For any other taper, the 
interferometer pattern must  be  adjusted to match the zeros where suppression is desired 
and  will  not  match the zeros elsewhere  in the pattern of the original array. For example, 
Kott  suggested  that the added elements might be placed one inter-element spacing away 
from the end elements of the original array. If this is done and the phase, p, is adjusted to 
produce cancellation of the pattern at the desired suppression angle; that  is, 

1 

p=--+((M+l)hsin8, -Lhu(8 , )  
2 2 
JL 

a  somewhat  degraded suppression centered at 8s is obtained. As a specific example, 
consider the case shown in  Figure 3 in  which the beam is unscanned  and the suppression 
is  centered  at 30 degrees. Figure 7 shows the result of using (12) superimposed on the 
patterns of Figure 3. Note that the width of the suppression region is reduced. However, 
the  impact  on the rest  of the pattern is also reduced resulting in a  lesser increase in 
sidelobe level than that  resulting  from the optimum  element spacing. Of course, for any 
but  uniform aperture illumination, one is left  no choice but  to adjust p for best alignment 
of the lobes for cancellation as described  and spacing of the added elements is of lesser 
importance. 

Recalling  Tseng’s  work  [2],  one  might at this point wonder why the necessary 
modification of the aperture distribution to achieve sidelobe suppression was found to lie 
not at the ends of the array  but,  rather,  somewhat  inside the aperture. After all, in the 
analysis above, placing the added elements at half the inter-element spacing from the end 
elements of the original array  can  be  viewed as placing them at the outer edge of the last 
unit  cell of the original array; i.e., at the aperture edge. The explanation is, of course, that 
Tseng’s sidelobe suppression is symmetrical.  That  is,  he creates a notch in the sidelobes 
on both sides of the beam  whereas Kott’s notch exists on only one side. Thus, the 
interferometer lobes of the added  elements,  which  would normally have a  null at the 
angle of the main  beam,  must be adjusted so as to slip one  half cycle with respect to the 
sidelobes of the original array as one  passes  from one suppression region to the one on 
the opposite side of the main  beam. This is accomplished by reducing the spacing of the 
added elements thus widening their interferometer lobes a  bit. In fact, this places the 
added elements within the aperture of the original array. Further evidence of this can be 
found in Tseng’s Figure 5.  wherein  it is shown  that suppression closer to the main beam 
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requires  more extreme narrowing of the interferometer aperture; i.e. more  extreme 
widening of the lobes, to  achieve  the  phase  reversal in the corresponding shorter angular 
range  between suppression regions. 

Returning to the oscillator controlled array, in light of the  above results, the  system 
shown in Figure 8 is proposed  and  shown  to  possess  several desirable features. The 
oscillators are assumed to be voltage controlled. That is, voltages applied to their tuning 
ports determine their free running frequencies. First, note  that  the phase difference 
between oscillators  is limited to-90 degrees in order  that  the oscillators remain  mutually 
injection  locked as described by Liao  and  York. Thus, for half  wavelength spacing of the 
radiating elements, if every oscillator is connected to  a radiating element, the  achievable 
beam-steering range is limited to plus  and  minus 30 degrees  from boresight. However, if 
only every other oscillator is connected to a radiating element, this range extends to 
endfire. This arrangement also has  an  advantage in terms of sidelobe suppression in that, 
for all steering angles, the  required excitation of  the  added elements is available from  the 
oscillators immediately adjacent to those connected to the  end radiating elements of the 
aperiure. As indicated, this excitation must also be (antisymmetrically) shifted by  an 
additional 90 degrees to align  the interferometer zeros with those of the pattern of the 
original array. Beam-steering is controlled by the tuning  voltages applied to  the  end 
oscillators of the array, VT, while positioning of the  sidelobe suppression region is 
controlled by the ganged attenuators, which  determine  the  amplitude of the interferometer 
pattern of the end elements. The’ ganged switches on  the  180-degree hybrids switch  the 
suppression region from one side of the  main  lobe to the other. 

III. A Two Dimensional Array with Uniform Illumination. 

The two-dimensional arrays  described by Kott comprise a number  of one-dimensional 
arrays  placed side by side. Here, in contradistinction, a two-dimensional  array is 
described  which provides a fully agile  pencil  beam  and a fully steerable sidelobe 
suppression region, which  can  be  positioned as desired in a far zone hemisphere. 

A. Sidelobe Suppression. 

In analogy with ( I ) ,  the  far  zone  field  of  the  two-dimensional  array  may be written in the 
form, 

where 
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u(B,#) = sin 8 cos4 - sin B, cos q5B 

v(B, 4) = sin B sin 4 - sin 0, sin 4B 

and,  for  uniform illumination, Am,=l. Again, summing in  closed form one arrives at, 

For sidelobe cancellation, four linear arrays are now added  to the original two- 
dimensional array. These arrays are  equal  in  length  and  number of elements to the edges 
of the original array  and  located  half  the  inter-element spacing from the edge elements as 
shown by the circles in  Figure 9 for M=3 and N=2. The excitation of these added 
elements is given by the following formulas. 

For the array at x = -(M + $)s, , the excitations, f,- , are, 

For the array at x = ( M  + $)sX , the excitations, f,' , are, 

For the array at y = ( N  + $)sy,  the excitations, g,' , are, 
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With these excitations, the far  zone fields of the peripheral arrays will  be, 

Representing the total field, ET, in the form, 

E,. (674) = E(@, 4) + P(6.7 4Ls )F(6 ,  4) + Q(6.s 9 4s 4) (17) 

it  becomes clear that sidelobe suppression centered at ( 6 ~ ,  &) will result if, 

a 
P(494S) = - ~ c ~ c [ ~ ~ , u ( B , , 4 , ) 1  

Q<@s,4s,> = -$csc[+ksYv(8,,4d] 

where a + p = 1 for  which the total  far  zone  field  becomes, 
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This pattern exhibits an agile  beam  pointed  in  the (OB, 4 ~ )  direction and an independently 
steerable sidelobe suppression region  including the direction (0s &). From (1 9) it  can  be 
seen that this suppression region  will  lie along a curve defined  by the following equation 
in the angular space. 

This curve obviously passes  through (e,+) = (eS,+s) regardless of the value of a. As a 
varies, the curve rotates around (Bs,+s) as shown in Figure  10a for the case when 8s = 30" 
and 4s = 30". The arrow indicates the location of the point (&,+s). The curves passing 
through the point (30", 210") are accessible by reversing the sign of the perimeter 
excitations relative to the original array. For  large values of a (positive or negative) the 
limiting curves pass through  both (30",  30") and (30", 210").  From the definition of u 
and v one can easily see that scanning the main  beam  merely produces a shift in the u,v 
plane.  Thus,  it is clear that  under  scanning the two intersection points move in a manner 
similar to the motion of the beam.  Therefore, by varying Os, +s, and a, one may position 
the suppression region to cover any  two desired points in the hemisphere and, of course, 
the  rest of the points along the corresponding curve defined by (20). The suppression 
described by Kott is recovered by setting a equal to 0 for a horizontal null or 1 for a 
vertical null. 

Figure 10b shows the effect of moving the suppression region position (es,+s) closer to 
the x-axis. Note that all of the contours except the two for a= l  move toward horizontal. 
In fact, if (8s,$s) is placed on the x-axis,  all  of  the contours except those for a= l  become 
horizontal,  coincide,  and  pass  through the main  beam. In general, this will occur 
whenever the line between (eB,$B) and (e&) is horizontal  and a similar phenomenon 
occurs when this line is vertical. 

B. Numerical Examples. 

Four examples are presented  to illustrate the independent nature of the steering of the 
main  beam  and the suppression region in two dimensions. A 21 x 21 element array  with 
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half  wavelength  element  spacing  is  considered.  Four 21 element linear arrays are added 
one-quarter  wavelength  from  each  edge.  The  first  example  far  zone field, shown  in 
Figure  11, illustrates the case  in  which the main  beam is unscanned  and the suppression 
region is set  to  pass  through (8s,$s) = (30",  30") and a = + placing the suppression 
region  primarily  in the first quadrant.  The  corresponding curve from  Figure  10a is 
superimposed on the  plot  indicating  that the suppression region follows the expected 
trajectory  and the "X" locates (OS,$s). 

The second example, shown  in  Figure 12, illustrates a case in which the main  beam is 
scanned  to (8B,$B) = (30", 180")  while the suppression region is centered at (8s,$s) = 
(30", 30") and a = + .  Here, again, the  expected  trajectory  from (20) is superimposed  and 
"X' locates (e&). Similarly, the third  example,  shown in Figure  13, illustrates a case in 
which the main  beam is scanned  to (eB,$B) = (30", 180") while the suppression region  is 
centered at (&,$s) = (30", 0"). For this case a must be  unity because Q in (18) becomes 
infinite. This is a case of the sort discussed  previously by Kott. The fact that there are 
two  nearby  nulling contours rather  than just one  is  due  to  very small numerical 
inaccuracies. Finally, Figure  14  illustrates a more  general case in which the main  beam is 
scanned to (eB,4B) = (30", 60") while  the suppression region is centered at (8s,$s) = (30", 
-45")  and a = $.  These examples indicate the overall performance achieved with this 
two dimensional generalization of the Kott  scheme. 

IV.  Concluding  Summary. 

It  has  been  shown that, under the assumption of uniform aperture illumination, the 
sidelobe suppression concept  due  to  Kott  can  be  conveniently  and optimally implemented 
in an array  using the coupled  oscillator  aperture  phase  control scheme of Liao and  York. 
Moreover, the two-dimensional  generalization  of the coupled oscillator scheme analyzed 
by Pogorzelski  has  been  shown to provide  for a two-dimensional generalization of  the 
Kott scheme resulting in a two-dimensional  array  with independently steerable main 
beam  and sidelobe suppression region. 
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Figure 1. Linear array of isotropic elements. 
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Figure 2. Augmented array of isotropic elements. 
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Figure 3a. Sidelobe suppression at 30 degrees for an unscanned  beam. 
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Figure 3b. Sidelobe cancellation at 30 degrees via one added element. 
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Figure 4. Sidelobe suppression at 30 degrees with main beam scanned to -30 degrees. 
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Figure 5. Sidelobe suppression at 8 degrees for an unscanned beam. 
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Figure 6 .  Sidelobe suppression for no increase in sidelobe level to the right of the main 
beam at -30 degrees. 
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Figure loa. Trajectories of the suppression region  for various values of a when the 
suppression region is centered at (30°, 30') and the beam is unscanned. 
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Figure lob. Trajectories of the suppression region for various values of a when the 
suppression region is centered at (30°, 5 O )  and the beam is unscanned. 
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Figure 1 1. Far zone pattern of a two dimensional array with unscanned  main  beam 
having sidelobes suppressed in the first quadrant. 
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Figure 12. Far  zone pattern of a two dimensional  array with scanned main beam  having 
sidelobes suppressed in the first quadrant and a = f . 
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Figure 13. Far zone pattern of a two dimensional  array  with  scanned  main  beam  having 
sidelobes suppressed in the first quadrant. 
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Figure 14. Far zone  pattern of a two dimensional  array  with  scanned  main beam having 
sidelobes  suppressed in the  fourth  quadrant. 
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On a Simple Method of Obtaining 

Sidelobe Reduction over a Wide Angular 
Range in One and Two Dimensions 

Ronald J. Pogorzelski 
Jet Propulsion  Laboratory 
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Technology, Jet  Propulsion  Laboratory,  California  Institute of Technology, and was partially  supported 
by the Ballistic Missile Defense Organmtion through  an  agreement  with  the  National Aeronautics and 
Space Administration. 

A patented technique for suppressing the sidelobes of an array antenna is 
considered. This technique involves  the addition of  two elements, one at each 
end of the array, which  together  produce an interferometer pattern used  for 
cancellation of sidelobes. It is shown  here  that the technique is most effective 
for  uniform illumination and  that there then exists an optimum fixed position 
for the added elements. The amplitude of the excitation of the auxiliary 
elements determines the angular location of  the  region of sidelobe reduction 
while the  phase of the excitation tracks the beam-steering phase of the array. 
Thus, this technique is seen  to be easily  implemented  in an array controlled by 
coupled oscillators. The technique generalizes in a straightforward manner to 
two-dimensional arrays in  which case a set of auxiliary elements on the 
perimeter of the array is required. A two  dimensional oscillator controlled 
array of this type is described  here  with  which  one  can produce a main beam 
and a sidelobe suppression region  which can be independently positioned 
anywhere in a hemisphere  provided  they do not coincide. 
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J P L  Agenda 

Michael Kott’s Patent. 
Optimal element positioning in one 
- Uniform  and  non-uniform tapers. 
- Tseng’s work. 
- Coupled  oscillator  implementation. 

Generalization to two dimensions. 
- Suppression contours. 
- Coupled  oscillator  implementation. 

Concluding Summary. 

Jimension. 

The presentation will  begin  with a discussion of Kott’s  patent on a method of 
sidelobe suppression. It  will  be  shown  that  it  works  best with uniform 
illumination taper and  that  in  such a case there is an optimum location for the 
radiating elements added  to the array. This result  will  be shown to be 
consistent with the results of Tseng  which indicate that sidelobe suppression in 
a one-dimensional  array  can be achieved by modification of the excitation of 
the only the elements at or near the ends of the array. Implementation of Kott’s 
scheme using  coupled oscillator array  phase control is then discussed and it is 
found  that such an implementation is very  well suited to the Kott scheme. 

The  Kott approach will then be generalized to two-dimensional arrays. Two- 
dimensional arrays are actually  considered  in the patent  but only in a limited 
fashion. The full generality available is discussed  here.  Again, coupled 
oscillator phase control is shown  to  be a convenient method of implementation. 
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1 JPLLinear Array of Isotropic 
Elements 

sin[(M + +)ksu(O)] 
sin[+ ksu(O)] 

E(@) = 

u(6)  = sin 6 - sin OB 

We begin by considering the  linear  array  of isotropic elements shown here. 
The radiation pattern exhibits the familiar sin(x)/x  behavior of a uniform 
aperture distribution. 
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J P L  
Augmented Array 

t 

e JP- e Jk(Ms+d)s lne  
+ p+ 

Following  Kott,  we  augment the array by adding two more elements, one at 
each end and seek an optimum  excitation of these elements to produce 
suppression of the pattern  in the vicinity of a  specified angle in the sidelobe 
region. 
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Sidelobe Cancellation 

GOAL: 

Set d, P’s, and  p’s  to  cancel sidelobes in a specified 
region.  Choose, 

d = -  S 

2 

1 I P =  - 
2sin[+  ks(sin 8, -sin e,)] - 2sin[+ ksu(8,)] 

The two added elements form an interferometer exhibiting the usual uniform 
amplitude pattern of lobes. By properly  choosing the distance d and the 
amplitude and  phase of the excitations, one  may  match  the interferometer lobe 
width  to  that of the array pattern in the sidelobe region. Then, by adjustment of 
the amplitude of the excitation of the added elements, one  may cancel the array 
pattern over a relatively  wide angular region surrounding any desired point. 
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Cancellation (Continued) 

Then, 

I 

The far zone pattern of the augmented  array  may  then  be expressed as shown 
here. 

To illustrate the effectiveness of the technique described above, we compute a 
number of simple examples and  plot  the far zone  gain  of the array. The array 
to be considered is a 21-element  array (M=10) with  half wavelength spacing. 
The two added elements are then  spaced one-quarter wavelength from the end 
elements. 
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Example 1 

21 element array 
h/2 spacing 
Unscanned beam 
S/L cancelled at 30” 
Optimum added 
element spacing 53 !I 50 

ANGLE [kg . ]  - *-a( L l n i  
Cnvm *rn” 

We begin with the case of an unscanned  beam and select the suppression region 
to be centered at 30 degrees from broadside. The resulting pattern is shown 
here together with the pattern of the original array without the added elements. 
Note that the suppression extends over several sidelobes. Note also that, 
because the pattern of the added elements is antisymmetric, the sidelobes for 
negative angles are enhanced. 
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Example 1 a 

21 element array 
h/2 spacing 
Unscanned beam 
SA, cancelled at 30" 
Single added element 

A 

-50 0 50 

The preceding result is to be compared  with the traditional nulling technique 
using a single  added element weighted  to place a null at 30 degrees. The result 
is shown  here  and exhibits a much  narrower suppression region. 

Kott's sidelobe suppression scheme  has  been applied here to a linear array  with 
uniform illumination. It has been  shown  that if the separation of the added 
elements from the end elements of the array  is set to  exactly half the inter- 
element separation of the original  array  and  if the phases of the added elements 
are set to a value  which is linearly extrapolated from the phases of the original 
array elements and  augmented  appropriately by +90 degrees, the zeros of the 
pattern of the added elements exactly coincide with the zeros of the original 
array pattern. This will  only  be  true  for  uniform illumination. It is in this sense 
that the uniform case is the ideal  one  for the Kott suppression scheme; that is, it 
yields the  widest  possible  suppression  region. For any other taper, the 
interferometer pattern  must be adjusted to match the zeros where suppression is 
desired and  will  not  match the zeros elsewhere in the pattern of the original 
array. 
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Example 1 b 

21 element array 20 - 
t , 

~ 

h/2 spacing 
Unscanned beam 
.S/L cancelled at 30" 
Non-optimal added 
element spacing: d=s 50 0 50 

ANGLE [kg . ]  

For example, Kott suggested  that the added elements might be placed one inter- 
element spacing  away  from  the  end elements of the original array. If this is 
done and the phase, p, is adjusted to produce cancellation of the pattern at the 
desired suppression angle a somewhat  degraded suppression centered at 8, is 
obtained. As a specific example, consider the case in  which the beam is 
unscanned  and the suppression is centered at 30 degrees. This chart shows the 
result of using d=s superimposed on the previously  discussed patterns. Note 
that the width of the suppression region is reduced.  However, the impact on the 
rest of the pattern is also reduced resulting in a lesser increase in sidelobe level 
than that resulting from the optimum element spacing. Of course, for any  but 
uniform aperture illumination, one is left no choice but to adjust p for  best 
alignment of the lobes  for cancellation as described and spacing of the added 
elements is of lesser importance. 
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Example 2 

21 element array -7 
h/2 spacing 
Beam scanned to -30" 
S/L cancelled at 30" 
Optimum added 
element spacing 

Next, consider an array with the main beam steered to -30 degrees from 
broadside and apply sidelobe suppression centered at 30 degrees as before. 
Here the suppression is even more effective due to the greater angle between 
the main lobe and the suppression region. This implies that if the suppression 
region were chosen close to the main lobe, the suppression would  be reduced in 
effectiveness. 
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Example 3 

2 1 element array 
h/2 spacing 
Unscanned beam 
S/L cancelled at 8” 
Optimum added 
element spacing 

20 7 
! 

ANGLE [@.I 
Note increased - .-ls?*rrs” 

ogrsi A n a ”  

neighboring sidelobes 

This is verified  in the case plotted  here  where the main  lobe is unscanned  but 
the suppression region is centered at 8 degrees. Here sidelobes for both 
positive and  negative angles are enhanced  and the suppression region is much 
narrower. Thus, the suppression is less effective near the main lobe and more 
effective far from the main lobe. 
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J p L  Condition for No Increase in 
Neighboring Sidelobes 

csc[+ksu(8,)] = 2 

Which for the present 
examples implies that: 

1 sin 8, - sin OB = - 
3 

The transition between  these two extremes can be taken to occur when no 
sidelobes on the same side of the  main  beam as the suppression region are 
increased in level. The mathematical condition for this to occur is given here. 
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J p L  No Neighboring Sidelobe 
Increase 

21 element array 
20 : 

h/2 spacing 
Beam scanned to 30' 
S/L cancelled at 9.594' 
Optimum added 
element spacing 

This transition case is illustrated here  where the main  beam is scanned to -30 
degrees while, according to  (1 l), the  suppression  region is centered at -9.594 
degrees. As anticipated, none of the sidelobes to the right of the main beam are 
increased. 
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J p L  F.I. Tseng, IEEE Trans. Antennas 
Propagat., AP-17,474-479, July 1979. 

Fig. 5 .  (a) Null steering for m2 = 17 (dashed) and m2 = 27 (solid) 
with R = 40 dB, B = 0.5. (b) Aperature distribution for m2 17 
(dashed) and m2 = 27 (solid) with R = 40 dB  and B - 0.5. 

Recalling Tseng’s work [IEEE Trans. AP-27,474-479, July  19791, one might  at 
this point  wonder  why the necessary  modification  of the aperture distribution to 
achieve sidelobe suppression was  found  to  lie  not at the ends of the array  but, 
rather, somewhat  inside the aperture. After all, in the analysis above, placing 
the added elements at  half the inter-element spacing from the end elements of 
the original array  can  be  viewed as placing them at the outer edge of the last 
unit cell of the original array; i.e., at the aperture edge. The explanation is, of 
course, that Tseng’s sidelobe suppression is symmetrical. That is, he creates a 
notch  in  the sidelobes on both sides of the beam  whereas Kott’s notch exists on 
only  one side. Thus, the interferometer  lobes of the added elements, which 
would  normally  have a null at the angle of the main beam,  must be adjusted so 
as to slip one  half cycle with  respect  to the sidelobes of the original array as one 
passes from  one suppression region  to the one on the opposite side of the main 
beam. This is accomplished by reducing  the spacing of the added elements 
thus widening their interferometer lobes a bit. In fact, this places the added 
elements within the aperture of  the original array. Further evidence of this can 
be found  in  Tseng’s  Figure 5.  wherein  it is shown that suppression closer to the 
main beam requires more  extreme  narrowing of the interferometer aperture; i.e. 
more extreme widening of the lobes, to achieve the phase reversal in the 
corresponding shorter angular range  between suppression regions. 
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JpL Coupled Oscillator 
Implementation 

Radiating Elements 

-M -3 -2 -1 
Oscillators 

Recently, Liao  and  York  introduced a method of beam-steering applicable to linear arrays using 
an array of coupled electronic oscillators to produce the necessary element excitations.[3] They 
showed that  the  beam of such  an array could be electronically steered without the use of phase 
shifters by controlling the free running frequencies of the end oscillators of the oscillator array. 
Inherent in this concept, however, is the assumption of uniform oscillator amplitude throughout 
the array. As has been  shown here, the uniform taper is, in a mathematical sense, the ideal taper 
for Kott's scheme and, in fact, the coupled oscillator system provides a means of achieving 
optimum results under the  uniform aperture illumination assumption. 
The system shown possesses several desirable features. The oscillators are assumed to be 
voltage controlled. That is, voltages applied to their tuning ports determine their free running 
frequencies. First, note that the phase difference between oscillators is limited to 90 degrees in 
order that the oscillators remain  mutually  injection  locked as described by Liao and York. 
Thus, for half wavelength spacing of the radiating elements, if every oscillator is connected to  a 
radiating element, the achievable beam-steering range is limited to plus and minus 30 degrees 
from boresight. However, if  only  every other oscillator is connected to  a radiating element, this 
range extends to endfire. This arrangement also has an advantage in terms of sidelobe 
suppression in that, for all steering angles, the required excitation of the added elements is 
available from  the oscillators immediately adjacent to those connected to the end radiating 
elements of the aperture. As indicated, this excitation must also be (antisymmetrically) shifted 
by an additional 90 degrees to align the interferometer zeros with those of the pattern of the 
original array. Beam-steering is controlled by the tuning voltages applied to the end oscillators 
of the array, VT, while positioning of the sidelobe suppression region is controlled by the 
ganged attenuators, which determine the amplitude of the interferometer pattern of the end 
elements. The ganged switches on the  180-degree hybrids switch the suppression region from 
one side of the  main  lobe to the other. 

15 



J P L  
Two-Dimensional Array 

2 

4 

u(8,#) = sinBcos/-sinB, cos#, 
v(8,#) = sin 8 sin 4 - sin OB sin 

The two-dimensional arrays described by Kott comprise a number of one- 
dimensional arrays placed side by side.  Here, in contradistinction, a two- 
dimensional array is described which provides a fully agile pencil beam and a 
fully steerable sidelobe suppression  region  which can be positioned as desired 
in a far zone hemisphere. 
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Augmented  Array 

o x x x x x x x o  0 0 0 0 0 0 0  

o x x x x x x x o  
o x x x x x x x o  

Y o x x x x x x x o  

I o x x x x x x x o  
0 0 0 0 0 0 0  

For sidelobe cancellation, four  linear arrays are now  added to the original two- 
dimensional array. These arrays are  equal  in  length and number of elements to 
the edges of the original array  and  located  half the inter-element spacing from 
the edge elements as shown by the circles for M=3 and N=2 
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Augmentation Excitations 

The excitations of the  added  linear  array elements are expressed in this form. 
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Augmentation Patterns 

The resulting radiation patterns of the  two  pairs of linear arrays are as shown 
and the total field of the  augmented  array is expressed as a linear combination 
of the fields of the original array  and the those of the added linear arrays. 
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Sidelobe Suppression Weights 

For sidelobe suppression in the  two-dimensional case we set the P and Q to the 
value shown  here  under the condition at the bottom of .the chart. 
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Total Field Pattern 

The resulting total far zone  field is as indicated  here. 
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Suppression Contours 

The sidelobe suppression will occur along contours satisfLing this equation. 
Obviously, these contours pass through the point (6'' &) . 
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Angular Coordinate System 

In plotting the far zone patterns a coordinate  system  will be used which treats 
the polar angular coordinates as Cartesian variables. This introduces some 
distortion of the patter compared  with  the  more familiar (u,v) system but has 
the advantage of more faithful representation of the  lobe widths at the extremes 
of the angular range. 
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Suppression  Contours 
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As a varies, the curve rotates around (e,,$,) as shown here for the case when 
0, = 30" and 4, = 30". The arrow indicates the location of the point (es&). 
The curves passing through the point (30", 210") are accessible by reversing the 
sign of the perimeter excitations relative to the original array. For large values 
of a (positive or negative) the limiting curves pass through both (30",  30") and 
(30", 210"). From  the definition of u and v one can easily see that scanning the 
main beam  merely produces a shift  in the u,v plane. Thus, it is clear that under 
scanning the two intersection points move in a manner similar to the motion of 
the beam. Therefore, by varying e,, $,, and a, one may position the 
suppression region to cover any two desired points in the hemisphere and, of 
course, the rest of the points along the corresponding curve defined by (20). 
The suppression described by Kott is recovered by setting a equal to 0 for a 
horizontal null or 1 for a vertical null. 
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Suppression Contours 
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This graph shows the effect of  moving the suppression region position (e,,$,) 
closer to the  x-axis. Note that  all  of the contours except the two for a=l move 
toward horizontal. In fact, if (e,,$,) is placed on the x-axis, all of the contours 
except those for a=l become horizontal, coincide, and pass through the main 
beam.  In general, this will occur whenever  the  line  between (e,,$,) and (es,$,) 
is horizontal and a similar phenomenon occurs when this line is vertical. 
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SIDELOBE  CANCELLATION 

60 
50 
40 
30 
20 
10 
0 

-1 0 
-20 
-30 
-40 
-50 
-60 

-60-50-40-30-20-10 0 10 20 30 40 50 60 

DEGREES 

I,.E.*DvoIcA* 

Four examples are presented  to  illustrate the independent nature of the steering 
of the main  beam and the suppression region in two dimensions. A 21 x 21 
element array with half  wavelength  element spacing is considered. Four  21 
element linear arrays are added  one-quarter  wavelength from each edge. The 
first example far zone field, shown  here, illustrates the case in which the main 
beam is unscanned  and the suppression  region is set to pass through (e,,$,) = 
(30°,300) and placing the suppression  region  primarily in the first quadrant. 
The corresponding curve from  Figure  10a is superimposed on the plot 
indicating that the suppression region  follows the expected trajectory and the 
“X” locates (es,$,). 
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The  second example, shown  here, illustrates a case in which the main  beam is 
scanned  to (e,,+,) = (30°,1 80’) while the suppression region is centered at 
(e,,+,) = (30°,300) and . Here, again, the expected trajectory from (20) is 
superimposed  and “x” locates (0,,$,). 
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SIDELOBE CANCELLATION 

: 25 -""-60-6040-30-20-10 0 10 20 30 40 60  60 

Similarly, the third example, shown in this graph, illustrates a case in which the 
main  beam is scanned to (e,,$,) = (30°,1800) while  the suppression region is 
centered at (e,,$,) = (30°,00). For this case a must be  unity because Q becomes 
infinite. This is a case of the sort discussed  previously by Kott. 
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SIDELOBE  CANCELLATION 
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Finally, this graph illustrates a  more  general  case in which the main beam is 
scanned  to (e,,$,) = (3O0,6Oo) while the suppression region is centered at 
(es,$) = (30°, -45") and . These examples indicate the overall performance 
achieved  with this two  dimensional generalization of the Kott scheme. 
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Concluding Summary 

Uniform illumination is optimum for  Kott’s 
sidelobe suppression technique. 
For uniform illumination an optimum 
position exists for the added elements. 
Generalization to two-dimensional arrays 
leads to suppression contours. 
Coupled oscillator phase control easily 
implements Kott sidelobe suppression. 

It  has  been  shown that, under  the assumption of uniform aperture illumination, 
the sidelobe suppression concept  due  to  Kott can be conveniently and  optimally 
implemented  in an array  using the coupled oscillator aperture phase control 
scheme of Liao and  York.  Moreover, the two-dimensional generalization of 
the coupled oscillator scheme has  been  shown to provide for a two-dimensional 
generalization of the Kott  scheme  resulting in a two-dimensional array with 
independently steerable main  beam  and sidelobe suppression region. 


